
Week 10: Final Review!
MATH 4A

TA: Jerry Luo
jerryluo8@math.ucsb.edu

Website: math.ucsb.edu/∼jerryluo8
Office Hours: Monday 9:30-10:30AM, South Hall 6431X

Math Lab hours: Monday 3-5PM, South Hall 1607

Disclaimer: Since I am not the one writing the exam, I cannot guarantee this practice
“exam” will look anything like the final. However, I reckon if you can do these without
trouble, you’re probably quite fine for the final.

4-1.5 Let v =

−4
−6
−8

, u =

 −3
−3

8 + k

, and w =

−4
−1
2

. The set {v, u, w} is linearly independent

unless k =?

Solution:

{v, u, w} is linearly independent if the following condition is met: c1v + c2u+ c3w = ~0
if and only if c1 = c2 = c3 = 0.

Note that {v, w} (ie. without u) is linearly independent, since v is not a multiple of w.
So, in order to make this set linearly dependent, we must find c1v + c2w = u. In other
words, the following system must be consistent:

c1

−4
−6
−8

+ c2

−4
−1
2

 =

 −3
−3

8 + k


The augmented matrix corresponding to this system is−4 −4 −3

−6 −1 −3
−8 2 8 + k


Reducing this into RREF, we get 1 0 3/4

0 1 3/10
0 0 k + 11

 .
The last equation corresponds to k+11, so k = −11 is what we need for this system to
be consistent, in which case, {v, u, w} linearly dependent. In other words, for {v, u, w}
to be linearly independent, we need k 6= −11.
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4-2.5 Let v1 =

[
−1
−2

]
and v2 =

[
1
3

]
. Suppose T (v1) =

[
−12

8

]
and T (v2) =

[
19
−9

]
. For an

arbitrary vector v =

[
x
y

]
, find T (v).

Solution: If we could find c1 and c2 such that c1v1 + c2v2 = v, then we would be done,
since T (v) = T (c1v1 + c2v2) = T (c1v1) + T (c2v2) = c1T (v1) + c2T (v2).

So, let’s find c1 and c2 such that

c1

[
−1
−2

]
+ c2

[
1
3

]
=

[
x
y

]
.

We note that this is a systems of equations, with the corresponding augmented matrix[
−1 1 x
−2 3 y

]
.

Row reducing this to RREF yields

[
1 0 −3x+ y
0 1 −2x+ y

]
. This tells us c1 = −3x + y and

c2 = −2x+ y.

Thus, we see T (v) = c1T (v1) + c2T (v2) = (−3x + y)

[
−12

8

]
+ (−2x + y)

[
19
−9

]
=[

−2x+ 7y
−6x− y

]
.
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5-2.12 Let A =

 −1 −3 −2
1 3 2
−2 −6 −4

. Find a basis for the null space (kernel) of A.

Solution: This is the set of v =

xy
z

 such that Av = 0.

We note that if Av = ~0, then we have −1 −3 −2
1 3 2
−2 −6 −4

xy
z

 =

 −x− 3y − 2z
x+ 3y + 2z
−2x− 6y − 4z

 =

0
0
0

 .
We note that what we have above is a systems of equations, and we are trying to solve
for x, y, z. The augmented matrix corresponding to this system is−1 −3 −2 0

1 3 2 0
−2 −6 −4 0


which row reduces to 1 3 2 0

0 0 0 0
0 0 0 0



This corresponds to x + 3y + 2z = 0, so if v =

xy
z

 was any solution, we must have

x = −3y − 2z, so v =

−3y − 2z
y
z

 =

−3
1
0

 y +

−2
0
1

 z. Since y and z were free

variables, we see that they are “unconstrained” (ie. they can be any number). In other

words, any solution would be of the form

−3
1
0

 y+

−2
0
1

 z, where y and z are scalars.

So, we see that

{−3
1
0

 ,
−2

0
1

} forms a basis.
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6-1.4 Find the determinant: C =


−1 2 −2 0
0 0 3 −1
3 0 −1 0
−2 1 0 −2


The solution to this problem is omitted, due to how annoying it would be to type up
and the fact that this isn’t very difficult to do.
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7-1.10 Consider the ordered bases B = (x,− (1 + 5x)) and C = (2, 2x− 4) for polynomials of
degree less than 2. Let E = (1, x) be the standard basis.
Hint: Don’t reinvent the wheel!

(a) Find TE
C , the transition matrix from C to E.

(b) Find TE
B .

(c) Find TB
E .

(d) Find TC
B .

Solutions: First, we write B =

{[
0
1

]
,

[
−1
−5

]}
, and C =

{[
2
0

]
,

[
−4
2

]}
.

Now...

(a) TE
C =

[
2 −4
0 2

]
(b) TE

B =

[
0 −1
1 −5

]
(c) TB

E =

[
0 −1
1 −5

]−1

(d) TC
B = TC

E T
E
B = (TE

C )−1TE
B =

[
2 −4
0 2

]−1 [
0 −1
1 −5

]
.
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8-1.8 Consider A =

 7 5 −6
−6 −4 6
5 5 −4

. Find the eigenvalues of A and its corresponding

eigenvectors.

Solution: It can easily be seen that the characteristic polynomial is −λ3−λ2+10λ−8,
which has roots −4, 1, 2 (ie. these are our eigenvalues).

Take λ = 1. We note that A− λI = A− I =

 6 5 −6
−6 −5 6
5 5 −5

.

We notice that A− I can be row reduced to

1 0 −1
0 1 0
0 0 0

, which tells us the null space

of A − I has elements of the form

 s
0
−s

, which is generated by

 1
0
−1

. Any of these

(except the 0 vector) is an eigenvector associated with λ = 1.

The eigenvectors associated to the other eigenvalues can be found similarly.
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9-1.1 Let A =

 6 −3 −13
1 2 5
3 −3 −10

. Suppose

 −1
1
−1

,

 1
−2
1

,

 1
1
0

 are eigenvectors. Then

what are the eigenvalues?

Solution: First, let v1 =

 −1
1
−1

, v2 =

 1
−2
1

, v3 =

 1
1
0

.

We note that Av1 =

 −6 + (−3) + (−1)(−13)
−1 + 2− 5

(−1)(3) + 1(−3) + (−1)(−10)

 =

 4
−4
4

 = −4v1, in which case,

we see that v1 is an associated eigenvector to −4. We can find the other eigenvalues
similarly.
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9-1.4 Let A =

[
5 2
0 3

]
. Diagonalize A. Compute A500.

Solutions: It can easily be checked that the characteristic polynomial of A is (λ −
5)(λ − 3), which has roots 5 and 3, which are our eigenvalues. So, one candidate for

D would be

[
5 0
0 3

]
.

Looking at 5, we see that A − 5I =

[
0 2
0 −2

]
. It can easily be checked that the

null space of A − 5I is

{[
s
0

] ∣∣∣∣s ∈ R
}

, which has basis

{[
1
0

]}
. We similarly see that

A− 3I =

[
2 2
0 0

]
, which has kernel

{[
−s
s

] ∣∣∣∣s ∈ R
}

, which has basis

{[
−1
1

]}
. So, we

can construct P =

[
1 −1
0 1

]
. Given this, P−1 can be found rather easily.

Now, ask yourself: Why is it now “easy” to find A500?
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9-1.11 Let A =

 −4 0 0
−1 −5 1
−3 −1 −3

. Find the real eigenvalue of A, it’s multiplicity, and the

dimension of its eigenspace.

Solution: It can be readily checked that the characteristic polynomial of A is−(λ+4)3,
in which case, the only eigenvalue is −4.

We see that A − (−4)I =

 0 0 0
−1 −1 1
−3 −1 1

. To find the dimension of the eigenspace of

−4, we must find the dimension of the nullspace of A + 4I. We note that A can be

row reduced to

1 0 0
0 1 −1
0 0 0

. From this, we see that the solution is of the form

0
s
s


for s ∈ R, which tells us that the null space has basis


0

1
1

 (ie. it has dimension

1).
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