MATH 4A
TA: Jerry Luo
jerryluo8@math.ucsb.edu
Website: math.ucsb.edu/~jerryluo8
Office Hours: Monday 9:30-10:30AM, South Hall 6431X
Math Lab hours: Monday 3-5PM, South Hall 1607
Disclaimer: Since I am not the one writing the exam, I cannot guarantee this practice "exam" will look anything like the final. However, I reckon if you can do these without trouble, you're probably quite fine for the final.

4-1.5 Let $v=\left[\begin{array}{c}-4 \\ -6 \\ -8\end{array}\right], u=\left[\begin{array}{c}-3 \\ -3 \\ 8+k\end{array}\right]$, and $w=\left[\begin{array}{c}-4 \\ -1 \\ 2\end{array}\right]$. The set $\{v, u, w\}$ is linearly independent unless $k=$?

Solution:

$\{v, u, w\}$ is linearly independent if the following condition is met: $c_{1} v+c_{2} u+c_{3} w=\overrightarrow{0}$ if and only if $c_{1}=c_{2}=c_{3}=0$.
Note that $\{v, w\}$ (ie. without u) is linearly independent, since v is not a multiple of w. So, in order to make this set linearly dependent, we must find $c_{1} v+c_{2} w=u$. In other words, the following system must be consistent:

$$
c_{1}\left[\begin{array}{l}
-4 \\
-6 \\
-8
\end{array}\right]+c_{2}\left[\begin{array}{c}
-4 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-3 \\
8+k
\end{array}\right]
$$

The augmented matrix corresponding to this system is

$$
\left[\begin{array}{cc|c}
-4 & -4 & -3 \\
-6 & -1 & -3 \\
-8 & 2 & 8+k
\end{array}\right]
$$

Reducing this into RREF, we get

$$
\left[\begin{array}{cc|c}
1 & 0 & 3 / 4 \\
0 & 1 & 3 / 10 \\
0 & 0 & k+11
\end{array}\right] .
$$

The last equation corresponds to $k+11$, so $k=-11$ is what we need for this system to be consistent, in which case, $\{v, u, w\}$ linearly dependent. In other words, for $\{v, u, w\}$ to be linearly independent, we need $k \neq-11$.

4-2.5 Let $v_{1}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Suppose $T\left(v_{1}\right)=\left[\begin{array}{c}-12 \\ 8\end{array}\right]$ and $T\left(v_{2}\right)=\left[\begin{array}{c}19 \\ -9\end{array}\right]$. For an arbitrary vector $v=\left[\begin{array}{l}x \\ y\end{array}\right]$, find $T(v)$.
Solution: If we could find c_{1} and c_{2} such that $c_{1} v_{1}+c_{2} v_{2}=v$, then we would be done, since $T(v)=T\left(c_{1} v_{1}+c_{2} v_{2}\right)=T\left(c_{1} v_{1}\right)+T\left(c_{2} v_{2}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)$.
So, let's find c_{1} and c_{2} such that

$$
c_{1}\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

We note that this is a systems of equations, with the corresponding augmented matrix $\left[\begin{array}{ll|l}-1 & 1 & x \\ -2 & 3 & y\end{array}\right]$.
Row reducing this to RREF yields $\left[\begin{array}{ccc}1 & 0 & -3 x+y \\ 0 & 1 & -2 x+y\end{array}\right]$. This tells us $c_{1}=-3 x+y$ and $c_{2}=-2 x+y$.
Thus, we see $T(v)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)=(-3 x+y)\left[\begin{array}{c}12 \\ 8\end{array}\right]+(-2 x+y)\left[\begin{array}{c}19 \\ -9\end{array}\right]=$ $\left[\begin{array}{c}-2 x+7 y \\ -6 x-y\end{array}\right]$.

5-2.12 Let $A=\left[\begin{array}{ccc}-1 & -3 & -2 \\ 1 & 3 & 2 \\ -2 & -6 & -4\end{array}\right]$. Find a basis for the null space (kernel) of A.
Solution: This is the set of $v=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ such that $A v=0$.
We note that if $A v=\overrightarrow{0}$, then we have

$$
\left[\begin{array}{ccc}
-1 & -3 & -2 \\
1 & 3 & 2 \\
-2 & -6 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-x-3 y-2 z \\
x+3 y+2 z \\
-2 x-6 y-4 z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We note that what we have above is a systems of equations, and we are trying to solve for x, y, z. The augmented matrix corresponding to this system is

$$
\left[\begin{array}{ccc|c}
-1 & -3 & -2 & 0 \\
1 & 3 & 2 & 0 \\
-2 & -6 & -4 & 0
\end{array}\right]
$$

which row reduces to

$$
\left[\begin{array}{lll|l}
1 & 3 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This corresponds to $x+3 y+2 z=0$, so if $v=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ was any solution, we must have $x=-3 y-2 z$, so $v=\left[\begin{array}{c}-3 y-2 z \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right] y+\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right] z$. Since y and z were free variables, we see that they are "unconstrained" (ie. they can be any number). In other words, any solution would be of the form $\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right] y+\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right] z$, where y and z are scalars. So, we see that $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]\right\}$ forms a basis.

6-1.4 Find the determinant: $C=\left[\begin{array}{cccc}-1 & 2 & -2 & 0 \\ 0 & 0 & 3 & -1 \\ 3 & 0 & -1 & 0 \\ -2 & 1 & 0 & -2\end{array}\right]$

The solution to this problem is omitted, due to how annoying it would be to type up and the fact that this isn't very difficult to do.

7-1.10 Consider the ordered bases $B=(x,-(1+5 x))$ and $C=(2,2 x-4)$ for polynomials of degree less than 2. Let $E=(1, x)$ be the standard basis.
Hint: Don't reinvent the wheel!
(a) Find T_{C}^{E}, the transition matrix from C to E.
(b) Find T_{B}^{E}.
(c) Find T_{E}^{B}.
(d) Find T_{B}^{C}.

Solutions: First, we write $B=\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -5\end{array}\right]\right\}$, and $C=\left\{\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 2\end{array}\right]\right\}$.
Now...
(a) $T_{C}^{E}=\left[\begin{array}{cc}2 & -4 \\ 0 & 2\end{array}\right]$
(b) $T_{B}^{E}=\left[\begin{array}{ll}0 & -1 \\ 1 & -5\end{array}\right]$
(c) $T_{E}^{B}=\left[\begin{array}{ll}0 & -1 \\ 1 & -5\end{array}\right]^{-1}$
(d) $T_{B}^{C}=T_{E}^{C} T_{B}^{E}=\left(T_{C}^{E}\right)^{-1} T_{B}^{E}=\left[\begin{array}{cc}2 & -4 \\ 0 & 2\end{array}\right]^{-1}\left[\begin{array}{ll}0 & -1 \\ 1 & -5\end{array}\right]$.

8-1.8 Consider $A=\left[\begin{array}{ccc}7 & 5 & -6 \\ -6 & -4 & 6 \\ 5 & 5 & -4\end{array}\right]$. Find the eigenvalues of A and its corresponding eigenvectors.
Solution: It can easily be seen that the characteristic polynomial is $-\lambda^{3}-\lambda^{2}+10 \lambda-8$, which has roots $-4,1,2$ (ie. these are our eigenvalues).
Take $\lambda=1$. We note that $A-\lambda I=A-I=\left[\begin{array}{ccc}6 & 5 & -6 \\ -6 & -5 & 6 \\ 5 & 5 & -5\end{array}\right]$.
We notice that $A-I$ can be row reduced to $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, which tells us the null space of $A-I$ has elements of the form $\left[\begin{array}{c}s \\ 0 \\ -s\end{array}\right]$, which is generated by $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$. Any of these (except the 0 vector) is an eigenvector associated with $\lambda=1$.

The eigenvectors associated to the other eigenvalues can be found similarly.

9-1.1 Let $A=\left[\begin{array}{ccc}6 & -3 & -13 \\ 1 & 2 & 5 \\ 3 & -3 & -10\end{array}\right]$. Suppose $\left[\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ are eigenvectors. Then what are the eigenvalues?
Solution: First, let $v_{1}=\left[\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
We note that $A v_{1}=\left[\begin{array}{c}-6+(-3)+(-1)(-13) \\ -1+2-5 \\ (-1)(3)+1(-3)+(-1)(-10)\end{array}\right]=\left[\begin{array}{c}4 \\ -4 \\ 4\end{array}\right]=-4 v_{1}$, in which case, we see that v_{1} is an associated eigenvector to -4 . We can find the other eigenvalues similarly.

9-1.4 Let $A=\left[\begin{array}{ll}5 & 2 \\ 0 & 3\end{array}\right]$. Diagonalize A. Compute A^{500}.
Solutions: It can easily be checked that the characteristic polynomial of A is $(\lambda-$ $5)(\lambda-3)$, which has roots 5 and 3 , which are our eigenvalues. So, one candidate for D would be $\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$.
Looking at 5 , we see that $A-5 I=\left[\begin{array}{cc}0 & 2 \\ 0 & -2\end{array}\right]$. It can easily be checked that the null space of $A-5 I$ is $\left\{\left.\left[\begin{array}{l}s \\ 0\end{array}\right] \right\rvert\, s \in \mathbb{R}\right\}$, which has basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$. We similarly see that $A-3 I=\left[\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right]$, which has kernel $\left\{\left.\left[\begin{array}{c}-s \\ s\end{array}\right] \right\rvert\, s \in \mathbb{R}\right\}$, which has basis $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$. So, we can construct $P=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$. Given this, P^{-1} can be found rather easily.
Now, ask yourself: Why is it now "easy" to find A^{500} ?

9-1.11 Let $A=\left[\begin{array}{ccc}-4 & 0 & 0 \\ -1 & -5 & 1 \\ -3 & -1 & -3\end{array}\right]$. Find the real eigenvalue of A, it's multiplicity, and the dimension of its eigenspace.
Solution: It can be readily checked that the characteristic polynomial of A is $-(\lambda+4)^{3}$, in which case, the only eigenvalue is -4 .
We see that $A-(-4) I=\left[\begin{array}{ccc}0 & 0 & 0 \\ -1 & -1 & 1 \\ -3 & -1 & 1\end{array}\right]$. To find the dimension of the eigenspace of -4 , we must find the dimension of the nullspace of $A+4 I$. We note that A can be row reduced to $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$. From this, we see that the solution is of the form $\left[\begin{array}{l}0 \\ s \\ s\end{array}\right]$ for $s \in \mathbb{R}$, which tells us that the null space has basis $\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ (ie. it has dimension 1).

